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The classic problem of counting monomer~timer arrangements on a two- 
dimensional lattice is analyzed using techniques from theoretical computer 
science. Under a certain assumption, made precise in the text, it can be shown 
that the general problem is computationally intractable. This negative result 
contrasts with the special case of a system with monomer density zero, for which 
efficient solutions have been known for some time. A second, much easier result, 
obtained under the same assumption, is that the partition function of a three- 
dimensional Ising system is computationally intractable. Again, the negative 
result contrasts with known efficient techniques for evaluating the partition 
function of a two-dimensional system. 

KEY WORDS: Computational complexity; Ising model; monomer-dimer 
system; #P-completeness. 

1. C O M P U T A T I O N A L  C O M P L E X I T Y  

The ma in  result  of this paper ,  in the l anguage  of the theore t ica l  compu te r  
scientist,  is that  "coun t ing  match ings  in a p l ana r  g raph  is # P - c o m p l e t e . "  
F o r  readers  unfami l ia r  with the b ranch  of theore t ica l  c o m p u t e r  science 
known  as computa t ional  complex i ty ,  some expans ion  of  this s ta rk  claim is 
necessary. We begin, therefore,  with an informal  i n t roduc t ion  to com- 
pu t a t i ona l  complexi ty ,  with the a im of  enabl ing  the nonspecia t i s t  reader  to 
apprec ia te  the ma in  result,  and  see in wha t  sense it justifies the claim made  
in the title. Precise def ini t ions of  terms will a p p e a r  later,  in Sect ion 3. 

One  of the ma in  goals  of c o m p u t a t i o n a l  complex i ty  is to classify 
p rob lems  accord ing  to their  c o m p u t a t i o n a l  difficulty, and  expla in  the 
appa ren t  gulf  tha t  separa tes  " t rac tab le"  and  " in t rac tab le"  problems.  To 
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take an example from statistical physics: there is a computationally feasible 
method for counting dimer coverings of a large planar lattice, whereas all 
known methods for counting dimer coverings of nonplanar lattices rapidly 
break down as the lattice size grows. This apparent dichotomy is repeated 
in examples drawn from other fields. 

Let us regard a computational problem as simply a function mapping 
instances to solutions (lattices to the number of dimer coverings they 
possess, for example). We say that a problem is polynomial-time computable 
if there is some algorithm (procedure) that computes this function in a 
length of time bounded by a polynomial in the size of the problem instance. 
(The size of a problem instance is the number of bits required to encode it.) 
In order to make this loose definition mathematically precise, it is 
necessary to define a formal model of computation. The one chosen in prac- 
tice, on grounds of simplicity, is the Turing machine. It is important to 
realize that the notion of polynomial-time computability is robust under 
changes of machine model--a problem that is polynomial-time computable 
on a Turing machine is polynomial-time computable on any reasonable 
model of computation (in particular, a conventional computer), and vice 
versa. It is through polynomial-time computability that the computer 
scientist formalizes the notion of "tractability" referred to earlier. Counting 
dimer coverings of a planar lattice is an example of a polynomial-time com- 
putable problem. 

It is not possible, at present, to prove that apparently hard problems, 
such as counting dimer coverings of an arbitrary lattice, are not 
polynomial-time computable. However, comparing the relative difficulty of 
problems can provide strong evidence for intractability. Suppose that A 
and B are problems to be compared. If it is possible, with the aid of a sub- 
routine for problem B, to solve A in polynomial time (i.e., the amount of 
work done outside the subroutine calls is polynomially bounded), then we 
say that problem A is polynomial-time (Turing) reducible to problem B. 
Note that if A is reducible to B in this sense, then problem A is tractable if 
problem B is. The notion of reducibility should be familiar: Kirchoff, for 
example, reduces the problem of counting spanning trees in a graph to 
that of evaluating a certain determinant. Since determinant evaluation is 
tractable, so is the spanning tree problem. Many other examples could be 
given. For our purposes, however, it is the contrapositive of the above 
proposition that is pertinent: if A is polynomial-time reducible to B, then B 
is intractable if A is. 

Before putting the idea of polynomial-time reducibility to work on 
counting problems, one further concept must be introduced. The class # P  
can be defined informally as the class of counting problems in which the 
structures being enumerated are easily recognized (i.e., there is a procedure, 
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running in time polynomial in the size of the problem instance, that tests 
whether a putative structure has the correct form). Counting spanning trees 
in a graph G is an example of a problem in # P; it is there because deter- 
mining whether a given subgraph of G is a spanning tree of G can be done 
in time polynomial in the size of G. Since it is usually easy to recognize the 
things we are trying to count (even if we cannot actually count them), it is 
reasonable to claim that almost all the commonly studied counting 
problems are in the class # P. 

It is a remarkable fact about the class # P  that it contains problems 
that are, in a precise sense, "as hard as any in the class." These provably 
hardest problems are called #P-complete. Now, as well as containing 
tractable problems (such as counting spanning trees), the class # P  also 
contains problems that are presumably intractable (such as counting dimer 
coverings). Thus, proving that a problem is #P-complete  provides 
substantial empirical evidence that it is computationally intractable. The 
concept of reducibility makes it is easy to formalize the phrase "provably 
hardest": A problem A in # P is # P-complete iff every problem B in # P is 
polynomial-time reducible to A. 

In practice, to prove that a problem A is #P-complete ,  we 
demonstrate that some known #P-complete  problem is polynomial-time 
reducible to it. Then, since the relation "is polynomial-time reducible to" is 
transitive, it follows that every problem is # P reducible to A, and hence A 
is # P-complete. 

Those seeking a precise and formal development of these ideas are 
referred to Garey and Johnson. (4) 

2. M O N O M E R - D I M E R  S Y S T E M S  

Monomer dimer systems have been proposed by several authors (3'5) as 
an idealized model for certain physical systems involving diatomic 
molecules. A monomer-dimer system is defined by a space lattice L 
containing N sites and a number Nd~< IN of dimers. A monomer-dimer 
arrangement is an assignment of the N a dimers to adjacent pairs of lattice 
sites such that no two dimers occupy a common site. The N -  2Nd sites left 
uncovered are the monomers of the system, and the ratio ( N - 2 N d ) / N  is 
referred to as the monomer density. A dimer system is the special case of a 
monomer-dimer  system in which the monomer density is 0. 

The thermodynamic properties of a monomer~dimer system depend 
crucially on the number of possible monomer-dimer  arrangements. 
Because of this, efficient methods of computing the number of 
arrangements for a given lattice L and given monomer density are of 
substantial physical interest. In 1961, working independently, Fisher, (1) 
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Kasteleyn, (s) and Temperley and Fisher (12) provided an elegant and com- 
putationally feasible solution for systems based on a two-dimensional 
lattice and zero monomer density. (Two-dimensional systems correspond 
physically to the adsorbtion of diatomic molecules onto the surface of a 
crystal.) These authors demonstrated that the number of dimer 
arrangements can be written as the determinant of an N x N matrix whose 
entries depend in a simple way on the lattice L. (9'1~ The resulting deter- 
minant can readily be evaluated by any of the usual efficient techniques, for 
example, Gaussian elimination. For convenience, we shall refer to this 
reduction as the FKT method. 

We may rephrase the dimer problem in graph-theoretic terms by 
abstracting from the lattice L an undirected graph G whose vertices corres- 
pond to the sites of L and whose edges correspond to the pairs of adjacent 
lattice sites. Observe that dimer coverings of the lattice L correspond 
precisely to 1-factors in the graph G. (Refer to Section 3 for graph-theoretic 
terminology.) The FKT method solves the following graphical enumeration 
problem: Given an undirected planar graph G, what is the number of 
1-factors of G? In applications to dimer systems, the graph G will have a 
regular, periodic structure. It is important to note, however, that the FKT 
method does not exploit periodicity, and is valid for arbitrary planar 
graphs. 

Ideally, we should like to extend the FKT method in two directions: 

1. By allowing the graph G to be nonplanar (corresponding 
physically to lattices that are three-dimensional). 

2. By counting matchings in G of specified cardinality (corresponding 
physically to counting monomer-dimer arrangements with 
specified, nonzero monomer density). 

Despite years of study, neither of the relaxations has found an efficient 
computational solution. The apparent computational difficulty of extension 
1 was in large measure explained by Valiant, (13"14) who showed that the 
problem of computing the number of 1-factors in an arbitrary graph is 
# P-complete. 

The aim of this paper is to provide evidence that extension 2 is also 
computationally intractable. More precisely, we shall prove that the 
problem of computing the number of matchings in a planar graph is # P- 
complete--it follows from this that computing the number of matchings of 
given size in a planar graph is also # P-complete. Thus, it is unlikely that 
any general, computationally feasible method exists for counting 
monomer~timer arrangements with given nonzero monomer density, even 
when the underlying lattice is two-dimensional. 
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Although the statement that a problem is #P-complete  is 
mathematically precise, some care is needed in its interpretation. Section 6 
discusses the ways in which the evidence we present for the intractability of 
the monomer-dimer  problem is less strong than we should ideally like. 

The main result of this paper has previously appeared, in a somewhat 
different form, and with a more labored proof, in the author's Ph.D.  
thesis. (7~ 

3. NOTAT ION A N D  T E R M I N O L O G Y  

Let G = ~ V, E )  be an undirected graph. A subgraph of G is spanning if 
it includes all the vertices of G. A 1-factor of G is a spanning subgraph of G 
in which each vertex has degree 1. A matching of G is a spanning subgraph 
of G in which each vertex has degree 0 or 1. If M is a matching of G, then 
the vertices of G that have degree 1 in M are said to be covered by M. The 
following counting problems are of particular interest in the context of 
monomer-dimer  systems: 

1 -FACTORS 
Instance: Undirected graph G. 
Output: The number of 1-factors of G. 

PLANAR MATCHINGS 
Instance: Undirected planar graph G. 
Output: The number of matchings of G. 

It will prove technically convenient to introduce a weighted version of 
the PLANAR MATCHINGS problem. Let X =  {x~,..., xk} be a set of indeter- 
minates, and let 2: V---, Xw Y_ be a labeling function which assigns to each 
vertex of G either an indeterminate from X or an integer. For each 
matching M of G, let w(M, G) denote the monomial 1 ~  2(v), where the 
product is over all vertices v E V that are not covered by M. (The empty 
product is to be interpreted as 1.) The weighted version of the matching 
counting problem is the following: 

(PLANAR) WEIGHTED MATCHINGS 
Instance: A (planar) graph G with vertex labels in the set 

{ - 1 , 0 ,  §  
Output: ~M w(M, G), where the sum is over all matchings M of G. 

A full appreciation of the principal result of the paper requires a 
familiarity with the notions of Turing machine and polynomial-time Turing 
reducibility. The reader may refer to any text on computational complexity 
(e.g. Refs. 4 and 6) for an explanation of these terms. The complexity class 
# P is perhaps less familiar, and we shall define it here. Let Z" be a finite 
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alphabet in which all problem instances are encoded. The class # P is a set 
of functions, from Z'* to the natural numbers, specified as follows: A 
function f :  X* ---, N is in # P iff there exists a polynomial-time bounded 
nondeterministic Turing machine T such that for all x ~ L'* the number of 
accepting computations of T, when run with x as input, is preciselyf(x).  A 
counting problem (function from Z'* to N ) is # P-complete iff it is complete 
for # P  with respect to polynomial-time Turing reducibility. 

The class # P plays the same rGle in the analysis of counting problems 
as the more familiar class NP does in the analysis of decision or existence 
problems. As evidence of computational intractability, a demonstration 
that a counting problem is # P-complete has the same status and flavor as 
a demonstration that a decision problem is NP-complete. 

4. THE COMPLETENESS RESULT 

Our aim is to prove that PLANAR MATCHINGS is #P-complete.  We 
proceed by exhibiting a series of reductions from the problem 1-FACTORS, 
which was shown to be #P-complete  by Valiant. 114) Denoting the relation 
"is polynomial-time Turing reducible to" by the symbol ~< ~, the reductions 
we employ are the following: 

A. 1-FACTORS ~T WEIGHTED HATCHINGS. 

B. WEIGHTED MATCHINGS ~ ; PLANAR WEIGHTED MATCHINGS. 

C. PLANAR WEIGHTED MATCHINGS ~ ~ PLANAR MATCHINGS. 

Since PLANAR MATCHINGS is clearly in # P, it will follow, by transitivity of 
~< ~, that PLANAR MATCHINGS is # P-complete. Informally, what is shown 
by the reductions is that the problem PLANAR MATCHINGS is com- 
putationally "at least as difficult as" the problem 1-FACTORS. 

The first reduction is straightforward enough. 

R e d u c t i o n  A. 1-FACTORS ~<T WEIGHTED MATCHINGS. Let G be an 
undirected graph, regarded as an instance of 1-FAcTORS. Let G (t) be the 
labeled graph derived from G by assigning label 0 to each vertex of G. Con- 
sider the sum ZM w(M, G(zI), where M ranges over all matchings of G (t). 
The only nonzero terms of the sum are those corresponding to matchings 
M that cover all vertices of GCtl; moreover, all nonzero terms are in fact 1. 
Thus, the number of 1-factors of G is equal to ZM w(M, G~Z)), which is the 
expected output of WEIGHTED HATCHINGS for the problem instance G (t). | 

The major work is involved in the second reduction. 

R e d u c t i o n  B. WEIGHTED HATCHINGS ~T PLANAR WEIGHTED 
MATCHINGS. Let G be an instance of WEIGHTED MATCHINGS, i.e., an 
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undirected graph with vertex weights in the set { -  1, 0, + 1 }. In outline, 
the reduction proceeds as follows. Embed G in the plane, identifying ver- 
tices of G with points in the plane, and edges of G with curves connecting 
appropriate pairs of vertices. Clearly, this can be done in such a way that 
all crossings of pairs of curves occur at distinct points in the plane. At each 
point where two edges cross, erase a small neighborhood of the intersection 
and insert a copy of a certain planar graph F; call the resulting planar 
graph G'. The substituting graph F is carefully chosen so that the weighted 
sum of matchings of the graph G' bears a very simple relationship to the 
weighted sum of matchings of G. 

In presenting the construction in greater detail, it is convenient to 
introduce the idea of "matching polynomial" of a graph. Let 
35= {xl ..... x~} be a set of indeterminates, and let H be an undirected 
graph with vertex labels drawn from the set 35uZ.  The matching 
polynomial of H, which we shall denote by P(H; xl,..., xk), is defined to be 

P(H; xl,..., x~)= ~, w(M, H) (1) 
M 

where the sum is over all matchings M of H. 
The crossover graph F is built from the two smaller components A 1 

and z/2, which are illustrated in Figs. 1 and 2. First consider the graph A I. 
A simple computation confirms that 

P ( L J I ;  x , y, z ) =  1 + x y + y z + x z  (2) 

Let us agree to refer to the degree- 1 vertices of A 1 as external and the other 
vertices as internal; further, let us say that an edge is internal if both its 
endpoints are internal, and external otherwise. Equation (2) may be inter- 
preted by considering zJ 1 in the context of some larger graph H. Suppose 
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A 
Fig. 1. The graph A I. 
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Fig. 2. The graph A 2. 
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A 1 is a subgraph of H that has the property that the only edges of H that 
are incident at internal vertices of A1 are those of A 1 itself. Then, when 
computing the matching polynomial of H, we may restrict the summation 
in Eq. (1) to matchings M that include exactly one or three of the external 
edges of A1; the net contribution from the remaining terms is zero. 

A similar analysis may be applied to the graph A2. As before, the 
degree-1 vertices are external, and the others internal. The matching 
polynomial is now 

P(A2; x, y, z) = 2(1 + xyz) (3) 

so that when A 2 is considered in some larger context H, the matchings that 
"contribute" to the sum (1) are those that either include or exclude all the 
external edges of A2. 

The crossover graph F itself is illustrated in Fig. 3. Again, the degree-1 
vertices are external, and the others internal. Although F may at first sight 
look complex, a second glance reveals that it is actually constructed from 
three copies each of A1 and A 2. Paraphrasing our previous discussion, each 
copy of A 1 can be thought of as forcing exactly one or three of its external 
edges to be present in any "contributing" matching of F, and each copy of 
A 2 as forcing all or none of its external edges to be present. Using this com- 
putational shortcut, one can easily evaluate the matching polynomial of F 
without recourse to machine computation. In fact, we have 

P(F;  w, x, y, z) = 8(1 + xy + wz + wxyz) (4) 
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-1  

Fig. 3. The graph F. 
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This equation indicates that F has exactly the properties required of a 
crossover substitute. Placing F in some context H, the matchings that 
contribute to the sum (1) are those that do one of the following: 

a. Exclude all external edges of F. 

b. Include the external edges of F incident at the x- and y-labeled 
vertices and exclude the other two. 

c. Include the external edges of F incident at the w- and z-labeled 
vertices and exclude the other two. 

d. Include all external edges of F. 

Informally, diametrically opposing pairs of external edges of F are forced 
to act in unison. (As an aside, the inspiration for the graph F comes from a 
well-known construction used in transforming arbitrary Boolean circuits to 
equivalent planar ones(U); the component A~ corresponds to an exclusive- 
or gate in the Boolean circuit construction, and the component A 2 to an 
explicit fan-out gate.) 

The reduction from WEIGHTED MATCHINGS to PLANAR WEIGHTED 

MATCHINGS can now be specified. Take the undirected graph G and embed 
it in the plane, as suggested at the beginning of the proof. This can be done 
using O(n 4) crossovers, where n is the number of vertices in G. Let 
el = {ul, v~} and e2= {u2, v2} be any two edges of G that cross in the 

822/48/1-2-9 
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embedding. Form the graph G1 from G by the following sequence of 
operations: 

1. Form the (disjoint) union of G and F. 

2. Delete the edges e~ and e2. 

3. Identify the vertices uj, v~, u2, v2 of G with (respectively) the x-, 
y-, w-, and z-labeled vertices of F. The identified vertices acquire 
their labels from the graph G. 

From Eq. (4) we have 

P(G~ ; .@) = 8P(G; .@) 

Note that G1 may be embedded in the plane using one fewer crossover 
than before. By iterating this procedure t =  O(n 4) times, a sequence of 
graphs G1,  G 2 ..... G t is produced, the final one planar and satisfying the 
identity 

P(G,; ~) = 8'P(G; ~) 

The WEIGHTED MATCHINGS problem asks us to compute the matching 
polynomial of G, which is easily done if the matching polynomial of the 
planar graph G, is known. It is clear that the whole reduction is 
polynomial-time computable. | 

The final reduction employs polynomial interpolation, a technique 
which appears to have central importance in establishing reductions 
between counting problems. (141 

R e d u c t i o n  C. PLANAR WEIGHTED MATCHINGS ~< T PLANAR 
MATCHINGS. Let G =  (V, E )  be an instance of PLANAR WEIGHTED 
MATCHINGS, i.e., an undirected, planar graph with vertex weights in the set 
{ - 1, 0, + 1 }. We demonstrate that the - l- and 0-labeled vertices may be 
eradicated at the expense of introducing extra + l-labeled vertices. The 
PLANAR WEIGHTED MATCHINGS problem for graphs in which all vertices 
have weight 1 is precisely the PLANAR MATCHINGS problem. 

We first show how the 0-labeled vertices may be removed a second 
application of the method will remove the -1-weighted vertices. Let G (X) 
be the graph derived from G by relabeling all 0-labeled vertices by the 
single indeterminate x. Then P(G; ~)  is equal to P(G(X); x) exaluated at 
X~0.  

Let n be the number of vertices in G. For a = 1, 2,..., n + l, define G~ to 
be the graph derived from G ~x~ by the following procedure: 
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1. For  each x-labeled vertex v of G (x), introduce a -  1 new l-labeled 
vertices v~l),..., v (a 1~, and a -  1 new edges {v, v~l~},..., {v, v(a-l~}. 

2. Relabel each x-labeled vertex with label 1. 

Let a be in the range 1 ~< a ~< n + 1, and consider any matching M of G (x~ 
that leaves uncovered exactly k x-labeled vertices. The matching M may be 
extended in precisely a k ways to a matching of Ga. Thus, P(G~; ~ )  is equal 
to P(G(~I; x) evaluated at the point x = a. Since P(G(X); x) is of degree at 
most n, the value of P(G(X); x) at the point x = 0 may be recovered by 
interpolation from the values at the points x = 1, 2,..., n + 1; as we have 
observed, these values are just P(G~; ~),.. . ,  P(Gn +1; ~ ) .  Using Newton's 
formula, one can performe the interpolation using purely integer 
arithmetic. 

Thus, we have a reduction from a single instance of PLANAR 
WEIGHTED MATCHINGS to n q- 1 instances of the same problem with restric- 
ted vertex weights { -  1, + 1 }. It is clear that a second application of the 
same method will eradicate the - l - l abe l ed  vertices, and hence complete 
the reduction to PLANAR MATCHINGS. It is also clear that the whole trans- 
formation is polynomial-time computable. II 

5. T H E  I S I N G  M O D E L  

The method described above in the context of monomer-dimer  
systems can be applied to other problems from statistical physics. It can be 
used, for example, to provide evidence that the partition function for three- 
dimensional Ising systems is computationally intractable. In contrast, a 
efficient procedure, due to Fisher, (2~ is known for evaluating the partition 
function in the two-dimensional case. 

Let G be an undirected graph (lattice) with N vertices (sites) and M 
edges (bonds). A subgraph of G is closed iff all its vertices have even degree 
(possibly zero). Denote by Ca(z ) the generating function for closed sub- 
graphs of G: 

CG(z)= ~ c ~ z  k 

k = 0  

where ck is the number of closed subgraphs of G with k edges. The partition 
function for the Ising model (9) is defined to be 

Z(K) = (cosh K) a4 2NcG(tanh K) 

We show that the problem of evaluating the coefficient of the highest 
degree term in the polynomial Ca(z) is #P-complete.  It follows that the 
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partition function itself is almost certainly hard to compute, otherwise the 
highest degree coefficient could be recovered by interpolation from the 
value of Ca(z) at a small number of points. 

Note that the coefficient of highest degree in Cc is simply the number 
of maximum closed subgraphs of G (maximum in terms of number of 
edges). We therefore introduce the following counting problem: 

MAXIMUM CLOSED SUBGRAPHS 
Instance: An undirected graph G. 
Output: The number of maximum closed subgraphs of G. 

The evidence for intractability of the Ising problem is captured in the 
following theorem: 

T h e o r e m .  MAXIMUM CLOSED SUBGRAPHS is #P-complete. 

Proof. We first observe a correspondence between 1-factors and 
maximum closed subgraphs. Let H = (U, A ) be an undirected graph, and 
suppose that each vertex of H has odd degree, and that H has at least one 
1-factor. Clearly, the subgraph ( U, F )  is a 1-factor of H iff the complement 
(U, A - F )  is a maximum closed subgraph of H. Thus, the number of 
maximum closed subgraphs of H is equal to the number of 1-factors of H. 

We use the above observation to establish a polynomial-time reduc- 
tion from the known #P-complete problem 1-FACTORS to MAXIMUM 
CLOSED SUBGRAPHS. Let the undirected graph G = ( V, E)  be an instance of 
the 1-FACTORS problem. Assume that G has at least one 1-factor. (This can 
be tested in polynomial time by the algorithm of Edmonds.) The number of 
vertices of odd degree in any finite graph is even. Since G possesses a 
1-factor, the total number of vertices in G, and hence the number of ver- 
tices of even degree, must be even. Denote the set of even degree verices of 
G by V~. We show how to augment G in such a way that the degree of 
each vertex in V~ is incremented by 1. 

1V In an arbitrary fashion, partition the vertices V e into ~p el unordered 
pairs. Take any pair of vertices {u, v} in the partition. Form the disjoint 
union of G with the "3-star" graph of Fig. 4, and identify vertex u with 
vertex s, and v with t. Repeat this procedure with each pair of even-degree 
vertices in the partition, to form the augmented graph G'. Observe that 

(i) Every vertex in G' has odd degree. 

(ii) The number of 1-factors of G' is exactly equal to the number of 
1-factors of G. 

Since the 1-factors in G' are in 1 1 correspondence with the maximum 
closed subgraphs of G', the reduction is complete. Membership of 
MAXIMUM CLOSED SUBGRAPHS in # P is straightforward. II 
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Fig. 4. The 3-star. 

With a little more work, it is possible to show that evaluating the 
generating function C(z) is hard for any f ixed rational number z other than 
1 or -1 .  [Evaluation of C ( - 1 )  and C(1) is straightforward once we 
observe that the closed subgraphs of G form a vector space over GF(2).] 

6. I N T E R P R E T A T I O N  OF T H E  R E S U L T S  

We have demonstrated that the problem of counting matchings in a 
planar graph is equivalent in computational difficulty 'to that of counting 
the number of accepting computations of a polynomial-time bounded non- 
deterministic Turing machine. Thus it is unlikely that any algorithm for 
PLANAR MATCHINGS exists whose run-time is bounded by a polynomial 
function of the size (number of vertices) of the problem instance. (Indeed, 
the discovery of such an algorithm would send something of a shock wave 
through the computer science community.) A weaker consequence of the 
result is that no solution in "closed form" is likely to exist; such a solution 
would imply the existence of a polynomial-time algorithm, but not vice 
versa. 

An anonymous referee advances the following intriguing suggestion: if 
(as seems quite possible) the "computational power" of a physical system 
does not exceed that of a Turing machine, then negative results of the type 
presented in this paper might translate to statements about the rate of 
evolution of the system itself. Since the physical system could not "com- 
pute" its own evolutionary path faster than a Turing machine, one could 
argue that the length of time required for the system to reach its ground 
state must grow faster than any polynomial (in the size of the system). 

]-'he #P-completeness result does, however, leave open two potential 
loopholes. First, the result applies to unrestricted planar graphs. It may 
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well be that certain graphs of practical interest, particularly those with a 
regular structure, are amenable to solution by efficient but specialized 
techniques. Second, the result applies to e x a c t  counting of matchings. The 
possibility of a polynomial-time algorithm that approximates the number 
of matchings with relative error n c say, where c is a positive constant and 
n the size of the problem instance, is by no means ruled out. What can be 
asserted, with a reasonable degree of confidence, is that PLANAR 
MATCHINGS is not soluble by some analogue of the Fisher-Kasteleyn- 
Temperley technique for counting 1-factors. 

A C K N O W L E D G M E N T  

I should like to thank Leslie Valiant for bringing this problem to my 
attention. 

REFERENCES 

1. M. E. Fisher, Statistical mechanics of dimers on a plane lattice, Phys. Rev. 124:1664-1672 
(1961). 

2. M. E. Fisher, On the dimer solution of planar Ising models, J. Math. Phys. 7:177(~1781 
(1966). 

3. R. H. Fowler and G. S. Rushbrooke, Statistical theory of perfect solutions, Trans. Faraday 
Soc. 33:1272-1294 (1937). 

4. M. R. Garey and D. S. Johnson, Computers and Intractability A Guide to the Theory of 
NP-Completeness (Freeman, 1979). 

5. O. J. Heilmann and E. H. Lieb, Theory of monomer~timer systems, Commun. Math. Phys. 
25:19~232 (1972). 

6. J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages and Com- 
putation (Addison-Wesley, 1979). 

7. M. R. Jerrum, The complexity of evaluating multivariate polynomials, Ph.D. Thesis CST- 
11-81, Department of Computer Science, University of Edinburgh, (1981). 

8. P. W. Kasteleyn, Dimer statistics and phase transitions, J. Math. Phys. 4:287-293 (1963). 
9. P. W. Kasteleyn, Graph theory and crystal physics, in Graph Theory and Theoretical 

Physics, F. Harary, ed. (Academic Press, 1967), pp. 43-110. 
10. J. K. Percus, Combinatorial Methods (Applied Mathematical Sciences 4, Springer-Verlag, 

1971). 
11. J. E. Savage, The Complexity of Computing (Wiley, 1976). 
12. H. N. V. Temperley and M. E. Fisher, Dimer problem in statistical mechanics--An exact 

result, Phil Mag. 6:1061 1063 (1961). 
13. L. G. Valiant, The complexity of computing the permanent, Theor. Computer Sci. 

8:189 201 (1979). 
14. L. G. Valiant, The complexity of enumeration and reliability problems, SlAM J. Com- 

puting 8:410~21 (1979). 


